RNA Exosome-Regulated Long Non-Coding RNA Transcription Controls Super-Enhancer Activity

نویسندگان

  • Evangelos Pefanis
  • Jiguang Wang
  • Gerson Rothschild
  • Junghyun Lim
  • David Kazadi
  • Jianbo Sun
  • Alexander Federation
  • Jaime Chao
  • Oliver Elliott
  • Zhi-Ping Liu
  • Aris N. Economides
  • James E. Bradner
  • Raul Rabadan
  • Uttiya Basu
چکیده

We have ablated the cellular RNA degradation machinery in differentiated B cells and pluripotent embryonic stem cells (ESCs) by conditional mutagenesis of core (Exosc3) and nuclear RNase (Exosc10) components of RNA exosome and identified a vast number of long non-coding RNAs (lncRNAs) and enhancer RNAs (eRNAs) with emergent functionality. Unexpectedly, eRNA-expressing regions accumulate R-loop structures upon RNA exosome ablation, thus demonstrating the role of RNA exosome in resolving deleterious DNA/RNA hybrids arising from active enhancers. We have uncovered a distal divergent eRNA-expressing element (lncRNA-CSR) engaged in long-range DNA interactions and regulating IgH 3' regulatory region super-enhancer function. CRISPR-Cas9-mediated ablation of lncRNA-CSR transcription decreases its chromosomal looping-mediated association with the IgH 3' regulatory region super-enhancer and leads to decreased class switch recombination efficiency. We propose that the RNA exosome protects divergently transcribed lncRNA expressing enhancers by resolving deleterious transcription-coupled secondary DNA structures, while also regulating long-range super-enhancer chromosomal interactions important for cellular function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes

Early reports indicate that long non-coding RNAs (lncRNAs) are novel regulators of biological responses. However, their role in the human innate immune response, which provides the initial defence against infection, is largely unexplored. To address this issue, here we characterize the long non-coding RNA transcriptome in primary human monocytes using RNA sequencing. We identify 76 enhancer RNA...

متن کامل

بیان ژن MALAT1 بعنوان یک نشانگر زیستی جدید در بیولوژی سرطان

Background & Aim: Long non-coding RNAs are regulatory molecules that adjust many vital intracellular processes. MALAT1 is a long non-coding RNA playing a key role in the regulation of intracellular important processes and also involved in biology of various cancers. The purpose of this study was to investigate the functions of MALAT1 and overview of its role in cancer biology. Methods: in this...

متن کامل

Induction of apoptosis and necrosis in human acute erythroleukemia cells by inhibition of long non-coding RNA PVT1

Recent advances in molecular medicine have proposed new therapeutic strategies for cancer. One of the molecular research lines for the diagnosis and treatment of cancer is the use of long non-coding RNAs (LncRNAs) which are a class of non-coding RNA molecules longer than 200 base pairs in length that act as the key regulator of gene expression. Different aspects of cellular activities like cell...

متن کامل

Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis

Super-enhancers are an emerging subclass of regulatory regions controlling cell identity and disease genes. However, their biological function and impact on miRNA networks are unclear. Here, we report that super-enhancers drive the biogenesis of master miRNAs crucial for cell identity by enhancing both transcription and Drosha/DGCR8-mediated primary miRNA (pri-miRNA) processing. Super-enhancers...

متن کامل

SOX2OT, a long non-coding RNA involved in autophagy regulation

Summary: SOX2 overlapping transcript (SOX2OT) is a long non-coding RNA associated with cancer pathogenesis. It contributes to a variety of cellular functions and recent evidence propounds its association with autophagy process. It has been showed that SOX2OT can regulate the expression of different autophagy associated factors in human cells with different mechanisms, however more remains to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2015